

PETERS TOWNSHIP SANITARY AUTHORITY

Chapter 94 Municipal Wasteload Management Report

for

Brush Run Water Pollution Control Plant NPDES Permit No. PA0028711

Operating Year 2013

Submitted March 2014

Prepared By:

5173 Campbells Run Road Pittsburgh, PA 15205

PETERS TOWNSHIP SANITARY AUTHORITY

Washington County, Pennsylvania

Brush Run Water Pollution Control Plant

Chapter 94 – Municipal Wasteload Management Report Operating Year 2013

TABLE OF CONTENTS

<u>Section</u>	Description	Page
1	Introduction	1
2	Hydraulic Loading	4
3	Organic Loading	10
4	Biosolids Disposal	15
5	Industrial Waste	16
6	Condition of the Sewer System	16
7	Pumping Stations	19
8	Sewer Extensions	21
9	Sewer System Monitoring, Maintenance, Repair and Rehabilitation	21
10	Review of Overload Conditions	26
11	Certification	27
^	NDDES Permit Discharge Limits	Annendiy A
D D		Appendix P
D		Арреник в
С	Comparison of Historical Projections	Appendix C
D	Annual Biosolids Production	Appendix D
E	Pump Station Operational Data	Appendix E
F	Flow Meter Calibration Certificates	Appendix F
G	PTSA System Index Map	Appendix G

KL.H

PETERS TOWNSHIP SANITARY AUTHORITY Washington County, Pennsylvania

Brush Run Water Pollution Control Plant

Chapter 94 – Municipal Wasteload Management Report Operating Year 2013

SECTION 1 INTRODUCTION

In compliance with Section 94.12, of Chapter 94, Title 25 of the Pennsylvania Code and the Rules and Regulations of the Pennsylvania Department of Environmental Protection (PADEP), this report is submitted by the Peters Township Sanitary Authority (Authority) as a summary of the loadings and conditions existing at the Brush Run Water Pollution Control Plant (WPCP), its associated pump stations, and its tributary sewage collection and conveyance sewer systems during the 2013 operating year. In addition, this report includes a projection of the anticipated loadings at the WPCP for the next five years (2014-2018) and at the sewage pumping stations for the next two years (2014-2015).

The Brush Run WPCP is owned, operated and maintained by the Peters Township Sanitary Authority, and operates under Water Quality Management Permit Nos. 6369406-A2 through A6, 6384417 (Belt Filter Press), and NPDES Permit No. PA0028711. The portions of the NPDES Permit which establish the discharge limits of the WPCP are contained in Appendix A. The NPDES Permit became effective on July 1, 2009, and expires at midnight on June 30, 2014. The NPDES Permit renewal application was filed in December 2013.

The WPCP is located along Brush Run near the intersection of Valley Brook Road and Route 19 in Peters Township, Washington County. The location of the plant is shown in Figure 1, below. The WPCP provides advanced secondary treatment. The treatment process consists of screening, the conventional activated sludge process with anoxic zones and internal mixed liquor recycle for denitrification, disinfection and dechlorination, and effluent aeration.

1

Biological solids produced during the treatment process are stabilized by aerobic digestion, dewatered by a belt filter press, and disposed of at a sanitary landfill.

Figure 1: Brush Run WPCP Location Map

The hydraulic design capacity of the Brush Run WPCP is 2.0 million gallons per day (MGD) and the organic design capacity is 3,956 lbs BOD/day. The plant was originally constructed in 1964 and has undergone several expansions since it began operating. The most recent significant upgrade expanded the capacity of the plant to its current rating in 1995. The WPCP was designed with a capacity intended to accommodate growth projections in the Brush Run watershed of Peter Township through the design year 2010. However, the population growth projections utilized in the initial design of the WPCP have not been realized; inflow and infiltration control and prudent operation of the WPCP have extended the useful life well beyond the initial design. The 2011/2012 wet weather improvements project was completed

in June 2012 and extended the design year of the WPCP to 2030. The project enables the plant to process peak wet weather hourly average flows up to 12.5 MGD, and a maximum monthly average daily flow of 2.5 MGD. The process treatment tanks are designed to be easily expanded to ultimately treat a maximum monthly flow of 3.0 MGD with minimal investment. Since being placed into operation in 1995, the final effluent discharges from the WPCP have never exceeded the NPDES Permit discharge limits.

The Authority's management, operating and maintenance personnel hold the operator certifications required for operation of the WPCP. Table 1 contains a listing of the wastewater operator certificate numbers, class and subclass under the Pennsylvania Department of Labor and Industry.

Employee	Class - Subclass	Issued	Expiration	Client ID	Cert #
James J. Miskis - Responsible Operator in	A,E 1,2,3,4	7/1/2012	6/30/2015	196324	T1676
Charge					
Mark A. Chucuddy	A,E 1,2,3,4	1/1/2012	12/31/2014	196953	T1630
Robert F. Paff Jr.	A,E 1,2,3,4	7/1/2012	6/30/2015	194018	T1739
Mike C. Anesetti	A,E 1,2,3,4	7/1/2012	6/30/2015	199541	T3960
Anthony M. Strelecki	B,E 1,2,3,4	1/1/2013	12/31/2014	193516	S8777
William J. Carlisle	B,E 1,2,3,4	1/1/2013	12/31/2014	197332	T3662

Table 1: Peters Township Sanitary Authority – Operator Certificates

Class	Subclass
A = > 5 MGD	1 = Activated Sludge/SBR
B = 5 MGD or Less	2 = Trickling Filters & RBC
C = 1 MGD or Less	3 = Ponds and Lagoons
D = < 0.1 MGD	4 = Pretreatment
E = Collection Systems	

SECTION 2 HYDRAULIC LOADING

In accordance with § 94.12(a)(1) and (3)

The hydraulic design capacity of the Brush Run WPCP is 2.0 MGD. The historical hydraulic loadings by month for the past five years of operation (2009-2013) are shown in Table 2. Table 2 also provides the number of equivalent dwelling units (EDUs) served during each operating year. Detailed data for EDU projections has been included in Appendix B. The wastewater flow generated per EDU is calculated for each year. A five-year average flow per EDU is used to project future influent flows.

	1	Actual Hydraulic	Loading					
No.	Monthly Average Flows (MGD)							
Year	2009	2010	2011	2012	2013			
January	1.478	1.327	1.017	1.646	1.892			
February	1.339	1.139	2.023	1.231	1.643			
March	0.916	1.872	2.141	1.510	1.552			
April	0.996	0.965	2.229	0.957	1.242			
May	1.101	1.056	1.621	0.911	0.969			
June	0.797	1.054	0.863	0.795	1.152			
July	0.767	0.839	0.775	0.840	1.483			
August	0.758	0.803	0.810	0.819	0.844			
September	0.765	0.832	0.897	0.982	0.869			
October	0.838	0.888	1.127	1.286	0.908			
November	0.795	1.242	1.362	1.062	1.040			
December	1.053	1.187	1.447	1.774	1.703			
Annual Average Flow (MGD)	0.967	1.100	1.359	1.151	1.275			
Maximum 3-Month Average Flow (MGD)	1.244	1.446	2.131	1.462	1.696			
Ratio of Max. 3-Month to Annual Average	1.29	1.31	1.57	1.27	1.33			
Total EDUs	4,178	4,233	4,255	4,314	4,416			
Residential EDUs	3,768	3,790	3,811	3,859	3,883			
Nonresidential EDUs	410	443	444	455	533			
Flow per EDU (gpd/EDU)	231	260	319	267	289			

Table 2: Brush Run WPCP Hydraulic Loadings (2009-2013)

Note: Flows in RED are the highest arithmetic mean of three (3) consecutive months for that particular year.

Monthly average flows entering the WPCP ranged from 0.844 MGD to a maximum of 1.892 MGD during the 2013 operating year. Maximum monthly flows have historically been experienced in the late winter and early spring months (January through May), whereas the remaining months generally experience flows closer to the annual average flow or less. The monthly average flow entering the WPCP did not exceed the hydraulic design capacity during any single month or consecutive three-month period in 2013. *Therefore, the Brush Run WPCP was not hydraulically overloaded during the 2013 operating year*.

The historical loading data is used to project future average monthly flows for the next five years. Average monthly flows are used to calculate the annual average daily flow for each year during the past five years and two maximum flow values are then calculated for each year; the maximum month and the maximum three-month average. The maximum month flow is relevant because Chapter 94 regulations define the hydraulic design capacity of a treatment works as the maximum monthly design flow. Furthermore, the regulations define a hydraulic overload condition as occurring when the monthly average flow entering a plant exceeds the hydraulic design capacity for three consecutive months. A consecutive three-month period during which the monthly average flow of each month exceeds the hydraulic design capacity for three be deemed hydraulic design beyond its hydraulic design capacity. The plant would therefore be deemed hydraulically overloaded, requiring that corrective measures be initiated.

Table 3 is a summary of the hydraulic loading over the past five years (2009 – 2013). The fiveyear annual average of flows will be used as the basis for determining the projected annual average flows. The maximum three-month flows for the next five years (2014-2018) will be projected based on the five-year average of the ratios of maximum three-month average flows to annual average flows.

KLH

Summary of Hydraulic Loading				
5-Year Annual Average of Flows (MGD)	1.170			
5-Year Annual Average of Ratios	1.354			
5-Year Average of Flows per EDU (gpd)	273			
Design Capacity (MGD)	2.00			

Table	3.1	Brush	Run	WPCP	Hydrau	ilic Lo	ading	Summary	, (2009-2013)	
lable	5.1	DIUSII	nun	VVFCF	nyulat		aumg	Summary		2003-2013	

The maximum monthly average hydraulic loadings are largely dependent on precipitation patterns with flows increasing as precipitation increases due to infiltration and inflow. A relatively accurate estimate of precipitation influence on the monthly average flow can be calculated assuming that the best predictor of the future 5-year precipitation influence is the most recent historical 5-year precipitation influence. The influence of climate in the future will be more or less equivalent to the influence experienced in the recent past.

Using the five-year average flow as the starting point (1.170 MGD) and adding flows from new EDUs annually, the hydraulic loading for the next five years is projected. The number of growth EDUs is multiplied by the five-year average flow per EDU (273 gpd/EDU) to determine the increase in flow due to growth for each year. The projected annual average flows are shown in Table 4.

Projected Hyrdraulic Loading							
Year	Previous Flow (MGD)	Additional EDUs (273 gpd/EDU)	Additional Increase in Flow (MGD)	Projected Flow (MGD)			
2014	1.170	58	0.016	1.186			
2015	1.186	30	0.008	1.195			
2016	1.195	34	0.009	1.204			
2017	1.204	43	0.012	1.216			
2018	1.216	45	0.012	1.228			

Table 4: Brush Run WPCP Projected Hydraulic Loadings (2014-2018)

It is important to note that the EDU growth projections for each of the next five years take the current condition of the economy into consideration. Housing starts have been recovering to some extent while a depressed economy may still be occurring. Therefore, projected new

customers per year are considerably less than the recent historical average, with greater recovery in housing starts expected in 2014 or 2015. Of the fifty eight (58) new customers expected in 2014, 22 are existing customers from Upper St. Clair (Deerfield Manor) service area that is currently tributary to the ALCOSAN conveyance and treatment systems. The Peters Township Sanitary Authority and Upper St. Clair have entered into a Memorandum of Understanding (MOU) to convey flow from the Deerfield service area via gravity connection to the PTSA Brush Run system. This concept will eliminate the need for the Deerfield Manor Lift Station and reduce wet weather loading to the existing Brush Run lift station in Upper St. Clair. The Deerfield service area could be transferred to PTSA Brush Run collection system in 2014 contingent on resolution of administrative and institutional sewage planning issues identified in the MOU. PADEP sewage facility planning was initiated in 2010 and continued through 2012. The planning is on-going as part of the Upper St. Clair ALCOSAN Wet-Weather Plan Municipal Feasibility Study process.

To determine the three-month maximum flows for the next five years, the projected annual average flow is multiplied by the average of the ratios from the past five years (1.354). This ratio is the maximum three-month average flow to the five-year annual average of flows. The projected flows are contained in Table 5.

Projected Maximum 3-Month Flows							
Year	Projected Flow (MGD)	Average of 5-Year Ratios	Max 3-Month Projected Flow (MGD)				
2014	1.186	1.354	1.606				
2015	1.195	1.354	1.617				
2016	1.204	1.354	1.630				
2017	1.216	1.354	1.646				
2018	1.228	1.354	1.662				

Table 5: Brush Run WPCP Projected 3-Month Maximum Flows (2014-2018)

The hydraulic loading graph on Page 9 illustrates the hydraulic design capacity; the monthly average, annual average, and maximum three-month average flow for the past five years

(2009-2013); the projected annual and maximum three-month average flows for the next five years (2014-2018). As evident in the above charts and the graph, the maximum three-month average flows are not expected to exceed the hydraulic design capacity of 2.0 MGD in the next five years. The maximum three-month average flow in 2018 is projected to be 1.662 MGD and it is not likely that the plant will experience flows that exceed the hydraulic capacity before that time. *Therefore, the Brush Run WPCP is not projected to be hydraulically overloaded within the next five years.*

Appendix C contains a table comparing the previous years' projected maximum three-month average flows with actual flows since 1999. Referring to the 2008 projected flows for 2013, the Authority projected in the 2008 Wasteload Management Report that the maximum threemonth average flow in 2013 would be 1.728 MGD. The actual flow was 1.696 MGD. The 2008 projection was 98% of the actual flow, which validates the method used for projecting future hydraulic loadings.

Brush Run Water Pollution Control Plant

Peters Township Sanitary Authority Brush Run Water Pollution Control Plant 2013 Chapter 94 Report

9

P 11 0-

SECTION 3 ORGANIC LOADING

In accordance with § 94.12(a)(2) and (3)

The organic design capacity of the Brush Run WPCP is 3,956 lbs BOD/day. The historical organic loadings by month for the past five years of operation (2009-2013) are shown in Table 6. The organic loading generated per EDU is calculated for each year. A five-year average loading per EDU is used to project future organic loadings.

Actual Organic Loading								
Voor	Monthly Average BOD₅ Loads (lbs/day)							
Tedi	2009	2010	2011	2012	2013			
January	2,965	2,386	2,349	2,350	3,236			
February	2,385	2,420	2,093	3,063	3,208			
March	1,900	2,614	2,153	2,176	2,858			
April	2,172	1,795	2,668	2,151	2,533			
May	2,029	2,112	2,843	2,194	2,414			
June	1,722	2,064	2,568	2,110	3,338			
July	2,120	2,125	1,960	1,997	2,508			
August	1,948	2,083	2,124	2,292	2,495			
September	2,148	1,854	1,808	2,387	2,813			
October	2,179	2,372	1,892	2,846	2,549			
November	2,314	2,299	2,373	2,697	3,058			
December	2 <u>,</u> 820	2,729	2,697	3,348	3,052			
Annual Average Loading	2,225	2,238	2,294	2,468	2,839			
Maximum Month Average Loading	2,965	2,729	2,843	3,348	3,338			
Ratio of Max. Month to Annual Average	1.33	1.22	1.24	1.36	1.18			
Total EDUs	4,178	4,233	4,255	4,314	4,416			
Residential EDUs	3,768	3,790	3,811	3,859	3,883			
Nonresidential EDUs	410	443	444	455	533			
Load per EDU (lbs/day)	0.533	0.529	0.539	0.572	0.643			

Table 6: Brush Run WPCP Organic Loadings (2009-2013)

Note: Load in RED is the highest value for that particular year.

The maximum monthly average organic loading during the 2013 operating year was 3,338 lbs BOD/day, below the design capacity of 3,956 lbs BOD/day. *Therefore, the Brush Run WPCP was not organically overloaded during the 2013 operating year*.

The methodology used to calculate the historical and projected organic loadings is similar to the procedure used for hydraulic loadings with the exception that maximum month organic loadings are used in place of the maximum three-month average loadings. Unlike hydraulic loadings which are dependent on precipitation patterns and the condition of the sewer system, the source of organic loadings is strictly from customers. Organic loadings are expected to incrementally increase as new customers connect to the sewer system. Some inherent variability in organic loadings may exist due to business activity from non-residential sources such as restaurants or the public school system, as does inherent variability due to raw sewage sampling and the analytical procedure used to calculate the BOD concentration of the influent raw sewage. Chapter 94 of the Municipal Wasteload Management regulations defines a facility's organic design capacity as the highest daily organic load at which the facility is expected to provide a specified level of treatment. The regulations define organic overload as occurring when the average daily organic load exceeds the organic design capacity. The average daily organic load is defined as the mean of all samples collected over a calendar month. Any monthly average exceeding the design organic capacity would indicate the facility is operating in an overloaded condition. The design capacity is specified in the Part II Water Quality Management Permit. The Part II Permit for the 1995 Brush Run WPCP upgrade and expansion project identifies the organic design capacity as 2,000 lbs BOD/day. Stress testing with only 50% of the plant capacity in service during initial startup of the facility in 1995 demonstrated the facility's actual organic capacity was closer to 4,000 lbs/day BOD. The Authority submitted a Rerating Study to the PADEP in October 1996. Subsequently, the PADEP approved rerating the Brush Run WPCP to an organic design capacity of 3,956 lbs/day.

Table 7 is a summary of the organic loading over the past five years (2009 – 2013). The fiveyear annual average of organic loadings will be used as the basis for determining the projected annual average loadings. The maximum month loadings for the next five years

(2014-2018) will be projected based on the five-year average of the ratios of maximum month loadings to annual average loadings.

Summary of Organic Loading				
5-Year Annual Avg. of Loads (lbs/day)	2,413			
5-Year Annual Average of Ratios	1.265			
5-Year Avg. of Loads per EDU (lbs/day)	0.563			
Design Capacity (lbs/day)	3,956			

Table 7: Brush Run WPCP Organic Loading Summary (2009-2013)

Using the five-year average load as the starting point (2,413 lbs BOD/day) and then adding loads from new EDUs annually, the organic loadings for the next five years are projected. The number of growth EDUs is multiplied by the five-year average load per EDU (0.563 lbs BOD/day) to determine the increase in organic loading due to growth for each year. The projected annual average organic loadings are shown in Table 8.

Projected Organic Loadings							
	Previous	Additional	Additional	Projected			
Year	BOD₅ Load	EDUs (0.563	BOD₅ Load	BOD₅ Load			
	(lbs/day)	ppd/EDU)	(lbs/day)	(lbs/day)			
2014	2,413	58	32.7	2,445			
2015	2,445	_30	16.9	2,462			
2016	2,462	34	19.1	2,481			
2017	2,481	43	24.2	2,506			
2018	2,506	45	25.3	2,531			

Table 8: Brush Run WPCP Projected Organic Loadings (2014-2018)

To determine the maximum month loadings for the next five years, the projected annual average loads are multiplied by the average of the ratios from the past five years (1.265). This ratio is the maximum month average load to annual average. The projected loadings are contained in Table 9.

Projected Maximum Month Organic Loading							
Year	Projected BOD₅ Load (lbs/day)	Average of Ratios	Max. Month Projected Load (lbs/day)				
2014	2,445	1.265	3,093				
2015	2,462	1.265	3,114				
2016	2,481	1.265	3,138				
2017	2,506	1.265	3,169				
2018	2,531	1.265	3,201				

The organic loading graph on Page 14 illustrates the organic design capacity; the monthly average, annual average and maximum month loads for the past five years (2009-2013); the projected annual and maximum month load for the next five years (2014-2018). As evident in the charts and the graph, the maximum month loads are not expected to exceed the organic design capacity of 3,956 lbs BOD/day in the next five years. The maximum month average loading in 2018 is projected to be 3,201 lbs BOD/day and it is not likely that the plant will experience loadings that exceed the organic capacity before that time. *Therefore, the Brush Run WPCP is not projected to be organically overloaded within the next five years.*

The 2013 annual average organic loading per EDU was 0.57 lbs/day BOD with the historical 5year average loading at the value of 0.563 lb BOD/day. The maximum month loading per EDU in 2013 was 0.756 lbs/day BOD. Based on 2010 census data, the average household in Peters Township has 2.88 persons/household. Therefore, the 2013 annual average and maximum month BOD per EDU translates to 0.20 lbs/person and 0.26 lbs/person, respectively. These values compare reasonably with PADEP design standards which suggest 0.22 lbs/capita.

KLH

Brush Run Water Pollution Control Plant

2013 Chapter 94 Report

14

E I II.

SECTION 4 BIOSOLIDS DISPOSAL

Liquid waste biosolids from the Brush Run WPCP's aerobic treatment process are conveyed to aerobic digesters where they are mixed and aerated until stabilized. The biosolids are pumped from the digestion tanks to a belt filter press for on-site mechanical dewatering. This dewatering operation also receives stabilized biosolids from the Donaldson's Crossroads WPCP, which are delivered via tanker truck to the aerobic digesters prior to being pumped to the belt filter press. Dewatered solids are conveyed to a roll-off dumpster that is periodically transported to Arden Landfill in Washington County for final disposal.

Annual biosolids production and processing data is included in Appendix D of this report. During 2013, the Brush Run WPCP produced a total of 116 dry tons and received a total of 117 dry tons from the Donaldson's Crossroads WPCP. When accounting for the average 13.99% solids content of the dewatered cake, a total of 1,696 wet tons of dewatered biosolids were sent off-site for landfill disposal. The biosolids dewatering facility, which typically operates one 8-hour shift, two days per week during summer months, and three days per week during the winter months, has adequate capacity for biosolids from both of the Peters Township treatment facilities. This capacity will remain available for the projected organic loadings of both plants for the next five years.

In order to obtain a Class B sludge designation, the geometric mean of seven (7) samples must be less than 2,000,000 colonies/gram of total solids. The Authority conducted these tests with all analyses performed by Microbac Laboratories. The results shown in Table 10 indicate that the Brush Run WPCP qualifies for a Class B sludge designation, with a geometric mean of colonies/gram of 260,676.

KLH

Sample Date	% Solids	Fecal Coliforms (Colonies/gram)	pH (feed)	PTSA % Solids
6-Nov-13	13.6%	1,466,000	7.11	13.46
25-Nov-13	12.6%	935,100	6.43	12.43
26-Nov-13	12.8%	342,100	6.53	12.42
3-Dec-13	12.5%	130,000	5.07	12.3
4-Dec-13	12.5%	130,000	5.07	12.75
5-Dec-13	12.7%	120,000	5.73	12.74
11-Dec-13	12.8%	86,000	4.85	13.36
Avg % Solids	12.8%			
Geo Mean of Colonies/gram		260,676		

Table 10: Fecal Analysis Results

SECTION 5 INDUSTRIAL WASTE

In accordance with § 94.12(a)(8)

The collection and conveyance system primarily serves residential customers, with service to relatively few commercial customers consisting of office, retail, and food service establishments. The Brush Run WPCP currently receives industrial discharges from only one source, the FPD Company. The FPD Company is only permitted for discharge of non-contact cooling water during the summer months, estimated at 500 gallons/day. Consequently there are no concerns about recurring or catastrophic toxicity, resulting biological plant upsets and noncompliant discharges to the outfall.

SECTION 6 CONDITION OF THE SEWER SYSTEM

In accordance with § 94.12(a)(6)

The overall condition of the collector and interceptor sewers in the Brush Run sewershed is considered fair to good. The Authority's major concern with the condition of the sewer system is infiltration and inflow (I&I). A substantial portion of the public and private building sewers in the Authority's sewer system were constructed 30 to 45 years ago, and contribute substantial volumes of I&I during and immediately after substantial precipitation events.

In 1997 the Authority initiated an aggressive systematic review of its sewer system, and now routinely invests \$500,000 to \$700,000 annually on sewer system rehabilitation, repair and replacement projects. While this effort has produced measurable reductions in infiltration volume, wet weather peak flows are of the same magnitude as they were in 1997. During unusually heavy rainfall events, short term, localized interceptor surcharging occurs, and during the most severe events, manhole overflows were experienced at two locations. In response to these issues, the Authority initiated an expansion of its program to manage wet weather flows in 2007. The program involved three elements of the Brush Run system including conveyance/interceptor capacity, treatment capacity and a building sewer inspection program.

The first element of the program was development of the Valleybrook Interceptor Comprehensive Plan. Since the interceptor capacity augmentation projects in 2008, one manhole overflow has been completely eliminated, and the second is nearly eliminated, and will be addressed with the planned Upper and Lower Palipetz Drive Augmentation projects in 2014/2015.

Pertaining to treatment capacity, the Authority undertook a Wet Weather Optimization Study of the Brush Run WPCP for the purpose of identifying ways to effectively process peak wet weather flows up to 13 MGD through the existing facility with minimal investment. The study included enhancements to the existing final clarifiers and conversion of excess aerobic digestion capacity to holding or clarification. Increasing the peak flow capacity of the treatment plant will allow augmentation of the interceptor to eliminate bottlenecks and thereby eliminate the excessive wet weather surcharging of the interceptor.

The Wet Weather Optimization Study was subdivided in three Phases. Phase A included an Alternative Screening Analysis that included in-situ WPCP field testing/sampling in the scope of work. Phase B included a detailed analysis of the alternatives that were recommended as part of Phase A alternative screening process. Phase C was an evaluation of the potential to

add additional clarifier capacity via adding a third clarifier. The findings of the Wet Weather Optimization Study were submitted to the PADEP in September of 2009.

The construction of the third clarifier (Brush Run WPCP Wet Weather Improvements Project) has been completed.

The third element to the Authority's wet weather management program is the development of a building sewer inspection program to identify excess infiltration originating on private property and the elimination of such. A new supervisory staff position was created to develop and manage the inspection program. The position was filled in March 2008. In 2010, discussion was initiated with Peters Township Council related to strengthening the existing Township real-estate dye testing procedures whereby potential illicit storm water or surface water runoff connections are dye tested during the real-estate transfer process. In February 2011 and continuing through May 2012, the Authority undertook a building lateral pilot program to demonstrate the effectiveness or ineffectiveness of conducting an area wide building sewer testing and repair program.

Under the building lateral pilot program, fifty six (56) participating property owners in the Friar Lane sewershed executed an agreement with the Authority that identified the terms and conditions of the Pilot Program. Each participating property was subjected to a rainfall simulation by simultaneously applying/injecting a volume of approximately 600-800 gallons, equivalent to a severe rainstorm, to various points on the property under test conditions. A camera inspection of the building sewer and drain was performed during the test to locate sources of infiltration. When flow was observed at the sewer main, different color dye was applied to identify the source of I&I. During the first two weeks of November 2011, the Authority performed the tests on the fifty five properties, with 42% of the properties failing due to defects in the private building sewer/or drain allowing groundwater to infiltrate into the sewer at a rate greater than one gallon per minute. An additional 24% of the properties exhibited deficiencies in which the property had minor defects, but did not contribute inflow

18

KLH

17-10

and infiltration greater than one gallon per minute during the test. During the pilot program, twenty three (23) properties had repairs completed to eliminate defects that contribute I&I into the sanitary sewer system, including uncovering and raising buried vents, cleanouts and installing proper caps, excavations to replace pipe, wyes and vent stacks, root cutting, and disconnection of an illegal foundation drain. In January 2013, the Authority installed flow monitors to determine the effectiveness of the building lateral pilot program. An initial calculation of effectiveness of the building lateral program indicates a 45% reduction in post-repair flow from one rain event. The objective was to obtain 40% reduction in flow and a minimum of 30% reduction during three peak rain events. The flow monitors remain in place and the Authority will continue to monitor the effectiveness of the building lateral program.

SECTION 7 PUMPING STATIONS

In accordance with § 94.12(a)(7)

The Authority owns, operates and maintains six sewage pumping stations in the Brush Run Sewer System. These pumping stations are listed as follows:

- Colony Manor Pump Station
- Fairway Estates Pump Station
- Hidden Brook Pump Station
- Maple Lane Pump Station
- Rutledge Drive Pump Station
- Sylvania Drive Pump Station

More information, including statistics, permit numbers and homes served is included in Appendix E. Table 11 identifies the station design capacity, actual maximum pumping rate, present maximum monthly daily average flow and the projected two-year maximum month daily average flow for each station.

19

Pump Station	Colony Manor	Fairway Estates	Hidden Brook	Maple Lane	Rutledge Drive	Sylvania Drive
Pump Rate (gpm) ¹	94.5	31.0	213.0	127.5	115.5	51.5
Actual Station Capacity (gpd) ²	136,080	44,640	306,720	183,600	166,320	74,160
Design Station Capacity (gpd)	115,000	36,000	315,000	216,000	144,000	144,000
Total Annual Run Hours ³	384.25	659.85	1,156.89	338.6	598	503.3
Run Time (% of available hours)	4.4%	7.5%	13.2%	3.9%	6.8%	5.7%
Annual Average Daily Pumped Volume (gpd)	5,967	3,352	40,507	7,096	11,353	4,082
Max Month Run Hours	41.15	71.03	165.57	43.5	87.1	121.7
Run Time (% of available hours)	5.5%	9.5%	24.6%	5.8%	11.7%	16.4%
Max Month Average Daily Pumped Volume (gpd)	7,526	4,262	75,571	10,735	19,471	12,131
Projected 2-year Max Month Average Day Volume (gpd)	7,600	4,500	76,000	11,000	20,000	12,500

Table 11: 2013 Pump Station Summary for the Brush Run Sewershed

¹Pump Rate was determined from the annual pump test and is the average pump rate of the two pumps. ²Actual Station Capacity is the Pump Rate multiplied by 1,440 minutes/day.

³Total Annual Run Hours are recorded on the panel meter and is the total run time for both service pumps.

As can be seen from the table, the maximum month daily flow for each pump station ranges from 5% to 25% of the station design capacity, indicating there is substantial reserve capacity at all six pump stations. Customer growth is not anticipated in any of the service areas to the pump stations, with the exception of the Hidden Brook Pump Station and the Maple Lane Pump Station. Both of these are expected to add a few customers each in 2014. It should be noted that nearly all of the pumping stations in the Brush Run sewershed are experiencing flows at or near their design flows, with the exception of the Sylvania Drive Pump Station. The Authority is investigating the cause of this low flow condition at the Sylvania Drive Pump Station. Force main accumulation has been identified as a contributing factor and is scheduled for cleaning in 2014.

The flow data presented in Table 11 was obtained from a combination of permanent flow meters at three stations (Hidden Brook, Maple Lane, and Rutledge Drive), run time meter and

KLH

draw down tests for each of the remaining stations using an electronic pump station analyzer. Pump station statistics and station analyzer reports can be found in Appendix E.

In 2012, an automatic telephone dialer was installed at the Fairways Estates Pump Station even though this pump station is equipped with an oversized emergency storage vault. Each of the remaining pump stations in the Brush Run Sewershed are also equipped with autodialers for automatic notification of equipment failure, loss of power and high wet well level. The dialers are programmed to call the Authority's emergency cell phone so that crews can be dispatched immediately regardless of the time of the day to investigate the cause of the fault and to correct it.

SECTION 8 SEWER EXTENSIONS

In accordance with § 94.12(a)(4)

The sewer extensions accepted include the following:

- Sewer extensions completed in 2013
 - McLaughlin/Weaver/Brula 94 LF of 8" PVC to serve 1 EDU
- Pending sewer extensions
 - Tuscany Development 6,076 LF of 8" PVC to serve 22 EDUs

SECTION 9 SEWER SYSTEM MONITORING, MAINTENANCE, REPAIR AND REHABILITATION In accordance with § 94.12(a)(5)

The Authority is responsible for operation, maintenance, administration, sampling and monitoring of the Brush Run WPCP. Operations generally fall into three categories; permit compliance, process optimization, and facilities operations.

<u>Permit Compliance</u>: Treatment process monitoring and sampling is performed in accordance with State and Federal NPDES requirements and the specific requirements of NPDES Permit No. PA0028711. Table 12 lists the wastewater and treated effluent parameters that are monitored and analyzed to satisfy these requirements. The NPDES permit discharge limits for the Brush Run facility are included in Appendix A.

Parameter	Frequency	Sample Type	Sample Location
Total Flow	Continuous	Recorder	Influent
BOD5	2 per week	24-hr composite	Influent
CBOD5	2 per week	24-hr composite	Influent & Effluent
Suspended Solids	2 per week	24-hr composite	Influent & Effluent
Ammonia-Nitrogen	2 per week	24-hr composite	Influent & Effluent
Dissolved Oxygen	2 per week	Grab	Influent & Effluent
Fecal Coliform	2 per week	Grab	Effluent
рН	2 per week	Grab	Influent & Effluent
Total Residual Chlorine	Daily	Grab	Effluent

Table 12: Brush Run WPCP Monitoring Requirements

During 2013, PTSA's on-site laboratory maintained Environmental Laboratory Accreditation under Title 25, Chapter 252, of the Pennsylvania Code. The Brush Run WPCP's accreditation certificate number was 006-002 during the 2013 operating year. Certificate 006-002 had an expiration date of January 31, 2014. The Authority has since received Certificate 007-001, expiring January 31, 2015. The PADEP Lab Number is 63-00908.

<u>Process Optimization</u>: The Authority's operators also regularly collect samples and monitor parameters in addition to those identified in the table above in order to ensure proper operation of the treatment process. Examples of process optimization monitoring include sampling the treatment process between the plant influent and final effluent sampling locations, tracking mixed liquor suspended solids and volatile solids, and settleable solids. Sample locations include the aeration tanks, clarifiers, and aerobic digesters. Third-party, independent calibration reports for the WPCP flow meters are included in Appendix F.

<u>Facility Equipment Operations</u>: The Authority staff also maintains and operates the necessary mechanical equipment that drives the process, including blowers, pumps and other equipment. The scope of operation and maintenance for this equipment covers both

preventive maintenance and repairs. The Authority maintains a computerized equipment maintenance database and inventory. All equipment, including standby equipment, is kept operational all times. When an equipment failure occurs, it is either repaired immediately by staff, or if necessary, sent out to a qualified equipment repair shop for immediate repair. All equipment is considered to be in satisfactory condition and properly maintained.

During 2008 the Authority upgraded its Supervisory Control and Data Acquisition (SCADA) to include the capability to monitor plant equipment status and operation from remote stations over the Internet. Management and each operator can access the SCADA system from their office or home to ascertain the status of equipment alarms, influent flow rate, aeration, dissolved oxygen concentration and other variables. The SCADA also provides remote access to the Authority's Hidden Brook Pump Station equipment status, wet well level, and discharge flow.

In 2009, the Authority expanded its monitoring to include continuous monitoring of final clarifier pH to assist with pH control during low flow conditions.

The Authority is also responsible for the maintenance and repair of approximately 72.5 miles of public sewer in the Brush Run Sewer System. A copy of the PTSA System Index Map is provided in Appendix G. The sewer system is maintained, monitored and rehabilitated by the Authority's staff, which consists of six maintenance personnel under the direction of the Authority Manager. Equipment owned by the Authority for maintenance and repair includes the following:

- High-Pressure Jet Cleaning and Vacuum Truck
- Closed-Circuit Video System with both main line and lateral cameras
- 4,000 Gallon Tanker Truck
- Trailer Mounted Emergency Generator (capable of providing power to any of the Authority's pump stations)
- 6-inch Trailer Mounted Diesel Trash Pump (emergency backup for pump stations)

 $K \square H$

_

- 4-inch, 3-inch and 2-inch gasoline powered trash pumps
- 7 Open Channel Flow Meters
- 2 automatic composite samplers

Furthermore, the Authority maintains a Geographical Information System (GIS) in conjunction with Peters Township, wherein all public sanitary sewers are graphically displayed along with properties, roads, streams and contours. The Authority continues to expand its GIS system to enhance its maintenance records and sewer mapping abilities.

The Authority defines maintenance as either preventive or emergency maintenance. Preventive maintenance operations include routine inspections of manholes and sewers, and scheduled inspections of all pump stations two times each week. Manholes are inspected with greater frequency during high ground water periods. When leaks are found, they are documented and repaired. The Authority's preventative maintenance goal includes closed circuit television inspection of 24,000 LF of sewer (Brush Run and Donaldson's Crossroads Sewer Systems combined) on an annual basis, which provides for a 15-year re-inspection cycle for its non-PVC sewer segments. Beginning in 2009, the Authority began regular inspection of PVC sewers. During 2013, 10,667 LF of sewer was inspected with closed circuit television (CCTV) equipment. Of the 10,667 LF televised in 2013, 8,050 LF was in the Brush Run sewershed.

Emergency maintenance operations would include the repair of broken sewers or force mains, cleaning and debris removal from blocked sewer lines, and repair of damaged manholes. The Authority's maintenance plan includes a target of rehabilitating and/or replacing 12,000 linear feet of sewer annually. Rehabilitation methods routinely used include point repairs followed by test and grout of sewer joints; Cured-in-Place (CIP) lining; and complete in-trench replacement of sewer and manholes.

Tasks undertaken by the Authority in 2013 in regards to sanitary sewer rehabilitation and maintenance in both the Brush Run and Donaldson's Crossroads sewersheds are described as follows:

- Three (3) inflow protectors were installed in manholes.
- Ten (10) manholes were excavated and adjusted to grade.
- Televised a total of 10,667 feet of public sewer including 5,463 feet of the East Edgewood Drive sanitary sewers.
- Staff performed two repairs on the Rutledge Drive Pump Station's force main.
- Upgraded the motor starters at the Stratford Drive Pump Station. This will allow for automatic restart of the pumps upon power failure, and thereby minimize staff callouts for short-duration power failures.
- Procured a portable generator and a grinder pump control panel for responding to prolonged power failures for our Irishtown Road customers served by Authority owned grinder pumps.
- Staff replaced approximately 8 LF of sanitary sewer along Marble Drive along with manhole invert improvements.
- Completed stream bank stabilization to area eroded during the July 10, 2013 100-year flood on Brush Run to protect our Valleybrook Interceptor in the vicinity of 539 Valleybrook Road.
- Cleaned the Waterdam Plaza Pump Station force main. The cleaning reduced the pumps' total dynamic head, which will serve to minimize pump wear as well as power consumption.
- Replaced the Waterdam Plaza Pump station automatic telephone dialer.
- Completed testing, grouting and trenchless Cured-in-Place Pipe (CIPP) repairs in the Stratford Manor area.
- Applied chemical root control to 2,132 LF of sewers previously found to have heavy root intrusion. The root control application will be placed on a 5-year recurring basis, unless the sewers with heavy root intrusion are either CIPP lined or replaced.

25

- Staff performed 225 dye tests on homes for property transfers. Of the testing performed 21.33% of the properties failed due to a major inflow or infiltration source, compared to the prior long-term average of 13%.
- Replaced the signal cable on the building sewer camera.
- Uncovered 5 manholes located on individuals properties with an additional 4 in the process of notification or repair. This work is at the property owners' cost.
- Performed 52 Grease trap inspections of food service establishments.
- Conducted post-repair contracted flow monitoring of the Friar Lane and East Edgewood sewers for the pilot project, and continued flow monitoring through midsummer with the Authority's open channel flow monitors. Preliminary evaluation of the flow monitoring results indicates measurable reduction of peak flow infiltration in the Friar Lane sewers when compared to the reference sewershed (East Edgewood).

SECTION 10 REVIEW OF OVERLOAD CONDITIONS

In accordance with § 94.12(a)(9)

As previously discussed, the Brush Run WPCP was not hydraulically or organically overloaded during the 2013 operating year, nor is it projected to be hydraulically or organically overloaded in the next five years (2014-2018).

KLH

SECTION 11 CERTIFICATION

In accordance with § 94.12(a)

I certify that the information provided in this report is true and correct to the best of my knowledge and belief.

uc

James J. Miskis, Manager Peters Township Sanitary Authority

2110 12 h

Chad E. Hanley, P.E., Reviewer KLH Engineers, Inc.

0

Samuel R. Gibson, E.I.T., Preparer KLH Engineers, Inc.

KL.H

APPENDIX A

NPDES Permit Discharge Limits

KLH

Pennsylvania Department of Environmental Protection

400 Waterfront Drive Pittsburgh, PA 15222-4745

Southwest Regional Office

JUN 1 2009

412-442-4000 Fax 412-442-4328

CERTIFIED MAIL NO. 7003 2260 0000 3141 2803

Peters Township Sanitary Authority 3244 Washington Road McMurray, PA 15317-3153

Re: Sewage

Brush Run Sewage Treatment Plant NPDES Permit No. PA0028711 APS I.D. No. 653015 Peters Township Washington County

Dear Authority Members:

Your permit is enclosed. Review it carefully, with special attention to the effluent limitations, monitoring requirements, and other requirements in Part C of the permit.

A Discharge Monitoring Report (DMR) and Supplemental Reporting Forms are included. The master DMR will be prepared and distributed by the U.S. Environmental Protection Agency (EPA) in the near future. Use the enclosed DMR Form until you receive a master from EPA. The reporting forms must be submitted to the Department and the EPA Regional Office as instructed in the permit and the enclosed Instruction Sheet.

A copy of an original "Discharge Monitoring Report - Supplemental Sewage Sludge Report" is enclosed. You should make a supply of copies for future use. Please follow the instructions and submit copies of the completed form (2 sided), as an attachment to the DMR, to each of the addresses listed in Part C of the permit, but not EPA.

We would like to bring your attention to the Department's new electronic DMR (eDMR) program. The program can be accessed through the internet at www.dep.state.pa.us/edmr and can be used in lieu of paper DMR and supplemental report submissions. Please find enclosed additional information concerning eDMR. We highly encourage your participation in this program. Please direct any questions to the contacts listed on the eDMR fact sheet.

Peters Township Sanitary Authority - 2 -

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa. C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, PO Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call me at 412-442-4344.

Sincerely,

Will C. Mitchell

William C. Mitchell Water Management

Enclosures

cc: U. S. Environmental Protection Agency

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER MANAGEMENT PROGRAM

AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM

NPDES PERMIT NO. PA0028711

In compliance with the provisions of the Clean Water Act, 33 U.S.C. Section 1251 et seq. (the "Act") and Pennsylvania's Clean Streams Law, as amended, 35 P.S. Section 691.1 et seq.,

Peters Township Sanitary Authority 3244 Washington Road McMurray, PA 15317-3153

is authorized to discharge from a facility located at

Brush Run Sewage Treatment Plant Peters Township Washington County

to receiving waters named Brush Run

in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts A, B, and C hereof.

THIS PERMIT SHALL EXPIRE AT MIDNIGHT, ______JUN_3_0_2014

The authority granted by this permit is subject to the following further qualifications:

- 1. If there is a conflict between the application, its supporting documents and/or amendments and the terms and conditions of this permit, the terms and conditions shall apply.
- 2. Failure to comply with the terms, conditions, or effluent limitations of this permit is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal.
- 3. Complete application for renewal of this permit, or notification of intent to cease discharging by the expiration date, must be submitted to the Department at least 180 days prior to the expiration date (unless permission has been granted by the Department for submission at a later date), using the appropriate NPDES permit application form.

In the event that a timely and complete application for renewal has been submitted and the Department is unable, through no fault of the permittee, to reissue the permit before the expiration date, the terms and conditions of this permit, including submission of the Discharge Monitoring Reports, will be automatically continued and will remain fully effective and enforceable pending the grant or denial of the application for permit renewal.

4. This NPDES permit does not constitute authorization to construct or make modifications to wastewater treatment facilities necessary to meet the terms and conditions of this permit.

DATE PERMIT ISSUED	JUN 1 2009	ISSUED BY
DATE EFFECTIVE	JUL 1 2009	

Samuel C. Harper

Water Management Program Manager

EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS FOR OUTFALL 001 WHICH RECEIVES WASTE FROM: the sewage treatment plant at Latitude 40° 17' 32" Longitude 80° 06' 31" Stream Code 36873 River Mile Index (RMI) 0.97

a. The permittee is authorized to discharge during the period from effective date through expiration date.

b. Based on the production data and/or anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply. Total (dissolved plus suspended fraction) is implied for each parameter unless otherwise indicated.

		DISCHA	MONITORING						
		Mass Unit	S		Concentr	ations		REQUIREMI	ENTS
	(lbs/day except	flow)	(m	g/l unless other	wise indicat	ed)		
Discharge Parameter	Average Monthly	Average Weekly	Max. Daily	Average Monthly	Average Weekly	Max. Daily	Instant. Max.	Measurement Frequency	Sample Type
Flow (mgd)	Monitor	and Report						continuous	recorded
CBOD-5 Day									
May 1 to Oct 31	333.6	500.4		20.0	30.0		40.0	2/week	8-hour composite
Nov 1 to Apr 30	417.0	625.5		25.0	37.5		50.0	2/week	8-hour composite
Suspended Solids	500.4	750.6		30.0	45.0		60.0	2/week	8-hour composite
Ammonia Nitrogen									
May 1 to Oct 31	33.4	50.0		2.0	3.0		4.0	2/week	8-hour composite
Nov 1 to Apr 30	75.1	113.4		4.5	6.8		9.0	2/week	8-hour composite
Total Residual Chlorine ⁽²⁾				0.05			0.16	30/month	grab
Dissolved Oxygen				5 mg/l i	minimum			2/week	grab
% Removal (BOD-5 Day & SS)	refer to	o Part C							
Fecal Coliform Organisms									
May 1 to Sept 30				200/100 m	1		1,000/100 ml ⁽¹) 2/week	grab
Oct 1 to Apr 30				2,000/100 m Geometric M	ean 11 ean		10,000/100 ml	2/week	grab
рH	not les	s than 6.0 nor	greater than 9.	.0 standard units				2/week	grab

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location: at the outfall pipe.

⁽¹⁾Effective disinfection to control disease producing organisms shall be the production of an effluent which will contain a concentration of fecal coliform organisms not greater than 1,000/100 ml in more than ten percent of the samples.

⁽²⁾See Part C of this permit for additional monitoring and reporting information relative to this parameter.

PART A

1. EFFLUENT LIMITATIONS AND MONITORING REQUIREMENTS FOR STORM WATER OUTFALLS: 010 through 013

- a. The permittee is authorized to discharge during the period from effective date through expiration date.
- b. The outfalls listed below are permitted to discharge uncontaminated storm water runoff from areas in and around the treatment plant. Refer to Part C Requirements Applicable to Storm Water Outfalls.

Outfall	Name	Receiving Stream/Code/RMI	Latitude/Longitude
010	Drain for Parking and Sidewalk Areas and Building Roof Drains	Brush Run / 36873 / 1.12	40° 17' 27" / 80° 06' 28"
011	Drain for Parking Area	Brush Run / 36873 / 1.01	40° 17' 29" / 80° 06' 28"
012	Drain for Lawn Area	Brush Run / 36873 / 1.00	40° 17' 30" / 80° 06' 28"
013	Drain for Lawn Area	Brush Run / 36873 / 0.99	40° 17' 31" / 80° 06' 28"

APPENDIX B

EDU Calculations

PETERS TWP SANITARY AUTHORITY

Non-Residential EDU Equivalent Calculation

YEAR	Total Non Res Consump	Ann Avg Res Consump	QRTLY	Non Res EDUs	Proportiona	split
	(actual data)	(actual data)	K gal.	(calculated)	based on 19	999 data
	from PTSA budget report	from PTSA budget report			BR (35%)	DC (65%)
1997	60,300,000	68800	17.2	876	307	570
1998	64,535,000	67200	16.8	960	336	624
1999	66,695,000	70000	17.5	953	333	619
2000	65,325,000	67200	16.8	972	340	632
2001	67,317,000	66400	16.6	1014	355	659
2002	66,003,000	66800	16.7	988	346	642
2003	67,400,000	64100	16.0	1051	368	683
2004	70,300,000	61400	15.4	1145	401	744
2005	80,539,000	63000	15.8	1278	447	831
2006	72,819,000	60700	15.2	1200	420	780
2007	79,714,000	61400	15.4	1298	454	844
2008	69,750,000	58,980	14.7	1183	414	769
2009	68,134,000	58,100	14.5	1173	410	762
2010	72,806,227	57,515	14.4	1266	443	823
2011	73,644,657	58,038	14.5	1269	444	825
2012	74,029,500	57,000	14.25	1299	455	844
2013	80,945,735	53,200	13.30	1522	533	989

					GRAND
	BR RES	BR TOTAL	DC RES	DC TOTAL	TOTAL
1997	2955	3262	1701	2271	5532
1998	2991	3327	1703	2327	5654
1999	3053	3386	1713	2332	5719
2000	3144	3484	1729	2361	5845
2001	3201	3556	1740	2399	5955
2002	3274	3620	1755	2397	6017
2003	3365	3733	1770	2453	6186
2004	3459	3860	1790	2534	6394
2005	3553	4000	1802	2633	6633
2006	3631	4051	1821	2601	6652
2007	3667	4121	1828	2672	6793
2008	3704	4118	1831	2600	6718
2009	3768	4178	1795	2557	6736
2010	3790	4233	1798	2621	6854
2011	3811	4255	1795	2620	6875
2012	3859	4314	1807	2651	6965
2013	3883	4416	1818	2807	7223

H:\TREATMENT\Chapt 94 info\EDU CALC.xls

APPENDIX C

Comparison of Historical Projections

KLH ____

BRUSH RUN WPCP Chapt 94 Projection vs Actual

	3-month Max	Flow			Max month I	BOD		
1999 Projected	Proj	Actual	Difference	% of Proj.	Proj	Actual	Difference	% of Proj. 87 94%
2000	1.553	1.423	0.110	87 74%	2983	2742	241	91.92%
2007	1.583	1.394	0.189	88.06%	3030	2610	420	86.14%
2002	1.608	1.485	0.123	92.35%	3078	2273	805	73.85%
2004	1.633	1.632	0.001	99.94%	3126	2579	547	82.50%
2000 Projected							_	
2001	1.605	1.367	0.238	85.17%	2951	2742	209	92.92%
2002	1.629	1.390	0.239	85.33%	2975	2610	365	87.73%
2003	1.653	1.485	0.168	89.84%	3039	2273	700	14.19% 83.65%
2004 2005	1.677	1.632	-0.186	97.32% 110.93%	3127	2379	717	77.07%
2001 Projected								
2007 110 2002	1.488	1.390	0.098	93.41%	2805	2610	195	93.05%
2003	1.511	1.485	0.026	98.28%	2847	2273	574	79.84%
2004	1,533	1.632	-0.099	106.46%	2889	2579	310	89.27%
2005	1.556	1.887	-0.331	121.27%	2932	2410	522	82.20%
2006	1.578	1.205	0.373	76.36%	2974	3171	-197	106.62%
2002 Projected								
2003	1.478	1.485	-0.007	100.47%	2745	2273	472	82.81%
2004	1.499	1.632	-0.133	108.87%	2785	2579	206	92.60%
2005	1.521	1.887	-0.366	124.06%	2826	2410	410	00.20%
2006	1.543	1.205	0.338	78.09%	2866	3171	-305	0.54%
2007	1.565	1.680	-0.115	107.35%	2907	2003	304	09.04 %
2003 Projected	4 407	1 6 2 2	0.145	100 75%	2670	2579	91	96.59%
2004	1.407	1 887	-0.145	123 98%	2733	2410	323	88.18%
2005	1.522	1 205	0.352	77.39%	2796	3171	-375	113.41%
2000	1.592	1 680	-0.088	105.53%	2860	2603	257	91.01%
2008	1.627	1.649	-0.022	101.35%	2923	2615	308	89.46%
2004 Projected								
2005	1.505	1.887	-0.382	125.38%	2636	2410	226	91.43%
2006	1.541	1.205	0.336	78.20%	2699	3171	-472	117.49%
2007	1,577	1.680	-0.103	106.53%	2763	2603	160	94.21%
2008	1.611	1.649	-0.038	102.36%	2823	2615	208	92.63%
2009	1.645	1.244	0.401	75.62%	2883	2965	-82	102.84%
2005 Projected					0505	0474	500	100 679/
2006	1.596	1.205	0.391	75.50%	2585	3171	-280	09 75%
2007	1.628	1.680	-0.052	103.19%	2030	2003	33 71	90.75%
2008	1.659	1.649	0.010	99.40%	2000	2015	.228	108 33%
2009	1.690	1.244	0.446	84 021%	2788	2905	-220	97.88%
2010	1.721	1.440	0.210	04.02175	2,00			
2006 Projected	1 555	1.680	-0.125	108.04%	2656	2603	53	98.00%
2007	1.555	1 649	-0.068	104.30%	2701	2615	86	96.82%
2000	1.606	1.244	0.362	77.46%	2745	2964	-219	107.98%
2010	1.632	1.446	0.186	88.60%	2789	2729	60	97.85%
2011	1.658	2.131	-0.473	1.285	2833	2842	-9	1.0031768
2007 Projected				100	0000	0046	20	00 570/
2008	1.613	1.649	-0.036	102.23%	2653	2015	270	90.07%
2009	1.633	1.244	0.389	76.18%	2080	2900	-2/9	100.11%
2010	1.657	1.446	0.211	87.27% 126.62%	2720	2842	-74	102.67%
2011	1.683	2,131	-0.448	0.855	2811	2042	-/-	102.01 /0
2012	1.709	1.402	0.247	0.000	2011			
2008 Projected	1 625	1 244	0 301	76.09%	2715	2965	-250	109.21%
2009	1.655	1 446	0.001	87.37%	2748	2729	19	99.31%
2010	1 677	2 131	-0.454	127.07%	2784	2842	-58	102.08%
2011	1 702	1.462	0.240	85.90%	2826	3348	-522	118.47%
2012	1.728	1.696	0.032	0.981	2869	3338	-469	1.1634716
2009 Projected							50	00.000/
2010	1,543	1.446	0.097	93.71%	2779	2729	50	98.20%
2011	1.566	2.131	-0.565	136.08%	2821	2842	-21	117 210/
2012	1.584	1.462	0.122	92.30%	2854	3348	-494	115 46%
2013	1.605	1.696	-0.091	105.07%	2031	3330		10.4070
2014	1.627				2932			

BRUSH RUN WPCP Chapt 94 Projection vs Actual

2010 Projec	ted								
	2011	1.459	2.131	-0.672	146.06%	2852	2842	10	99.65%
	2012	1.477	1.462	0.015	98.98%	2889	3348	-459	115.89%
	2013	1.500	1.696	-0.196	113.07%	2932	3338	-406	113.85%
	2014	1.520				2972			
	2015	1.537				3004			
2011 Projec	ted								
	2012	1.649	1.462	0.187	88.66%	2803	3348	-545	119.44%
	2013	1.660	1.696	-0.036	102.17%	2822	3338	-516	118.28%
	2014	1.669				2838			
	2015	1.679				2854			
	2016	1.687				2868			
2012 Projec	ted								
-	2013	1.601	1.696	-0.095	105.93%	2945	3338	-393	113.34%
	2014	1.612				2965			
	2015	1.625				2989			
	2016	1.640				3017			
	2017	1.655				3044			
AVG % of P	roj. =				98.80%				98.69%

APPENDIX D

Annual Biosolids Production

KLH .

Peters Township Sanitary Authority Annual sludge production calculation using wet tons and cake solids

2013	AVG.	WET	CALC	DC DRY	BR DRY	BR METRIC	DC METRIC
Month	CAKE	TONS	TOTAL	TONS	TONS	DRY TONS	DRY TONS
	% SOLIDS	[1]	`	[2]	[3]	[3]	[2]
Jan	13.38	200.66	26.85	13.76	13.09	11.87	12.48
Feb	12.69	145.33	18.44	9.49	8.95	8.12	8.61
Mar	12.93	189.22	24.47	12.62	11.85	10.75	11.45
Apr	13.28	191.02	25.37	11.09	14.28	12.95	10.06
May	12.93	110.68	14.31	4.83	9.48	8.60	4.38
Jun	15.30	121.09	18.53	10.63	7.90	7.16	9.64
Jul	16.17	71.07	11.49	7.11	4.38	3.98	6.45
Aug	16.48	115.83	19.09	10.91	8.18	7.42	9.90
Sep	14.37	129.37	18.59	7.04	11.55	10.48	6.39
Oct	14.06	169.50	23.83	15.29	8.54	7.75	13.87
Nov	13.32	104.07	13.86	6.18	7.68	6.97	5.61
Dec	12.97	148.56	19.27	8.77	10.50	9.52	7.96
Total	13.99	1696.40	234.10	117.72	116.38	105.58	106.80

1) As reported received at landfill

- 2) DC (Donaldson Crossroads) dry tons is the dry tonnage removed from DC digesters and hauled to to the Brush Run plant for dewatering and final disposal.
- 3) BR (Brush Run) dry tons is calculated as the difference between Total Dry Tons received at landfill minus DC dry tons received at BR for processing.

APPENDIX **E**

Pump Station Operational Data

2013	JAN.	FEB	MAR	APR	MAY	JUN	յսլ	AUG	SEP	ост	NOV	DEC		MTH	ACTUAL	TOTAL	AVG	AVG
LOCATION Design Cap.													HOURS	A V O	PUMP OUTPUT	PUMPED	PER	GPD
RUTLEDGE DR.	26.70	24.20	27.80	22.50	21.30	22.80	43.20	22.70	15.70	14.70	17.80	34.30	293.70	24.48	116	2,044,152	5,600	11,353
144,000 GPD	27.50	24.80	28.60	23.20	22.10	28.80	43.90	22.90	15.80	14.70	17.60	34.40	304.30	25.36	115	2,099,670	5,753	
COLONY MANOR	16.15	14.23	15.93	15.25	15.18	14.71	20.19	15.49	12.88	4.45	14.24	20.37	179.07	14.92	95	1,020,699	2,796	5,967
115,000 GPD	16.30	14.02	15.73	15.81	14.60	14.92	20.96	17.17	13.59	28.61	13.84	19.63	205.18	17.10	94	1,157,215	3,170	
STRATFORD	35.33	29.40	35.30	29.20	24.30	31.10	42.10	20.60	17.50	18.20	22.50	58.30	363.83	30.32	136	2,968,853	8,134	17,181
144,000 GPD	35.60	29.60	33.00	26.10	25.60	77.00	42.50	21.00	16.90	18.00	22.30	57.10	404.70	33.73	136	3,302,352	9,048	
FAIRWAY EST.	29.45	28.49	26.46	25.43	32.11	23.65	28.29	21.64	19.55	22.80	21.59	35.13	314.59	26.22	33	622,888	1,707	3,352
36,000 GPD	34.77	23.46	31.76	29.55	32.83	27.25	30.88	24.61	22.97	26,90	24.38	35.90	345.26	28.77	29	600,752	1,646	
SYLVANIA DR.	19.10	12.50	25.90	9.40	7.70	9.40	20.50	8.50	10.30	9.90	13.40	21.30	167.90	13.99	58	584,292	1,601	4,082
144,000 GPD	102.60	30.00	47.00	13.20	11.90	13.70	29.00	12.20	14.40	14.10	17.70	29.60	335.40	27 <i>.</i> 95	45	905,580	2,481	
WATERDAM	46.20	37.10	44.80	43.30	39.10	34.70	44.10	31.80	27.20	37.40	24.00	23.50	433.20	36.10	131	3,404,952	9,329	18,085
223,000 GPD	34.70	34.20	38.50	38.30	35.70	32.50	39.80	29.40	25.50	34.20	22.80	23.20	388.80	32.40	137	3,195,936	8,756	
HIDDEN BROOK	46.87	69.67	42.67	40.93	37.70	38.49	58.42	41.38	31.11	36.45	36.67	71.73	552.09	46.01	213	7,055,710	19,331	40,507
315,000 GPD	45.80	95.90	68.40	41.10	57.80	35.50	54.60	38.50	29.40	34.50	34.70	68.60	604.80	50.40	213	7,729,344	21,176	
MAPLE LANE	13.30	14.00	16.00	13.20	12.20	12.70	22.00	11.30	9.20	16.90	11.70	20.00	172.50	14.38	127	1,314,450	3,601	7,096
216,000 GPD	13.60	14.00	16.50	13.30	12.60	12.40	21.50	13.00	9.70	10.70	10.70	18.10	166.10	13.84	128	1,275,648	3,495	

NOTE: MAY 7 discovered bad off float at Hiddenbrook 10/11/13 to 10/28/13: Colony Manor, Pump 1 out of service due to bad motor starter. 10/4/13: Maple Lane: found off float in bottom of well, pump #1 had run for a continuous 5 hours. 8/5/13 Waterdam F/M cleaned

PETERS TOWNSHIP SANITARY AUTHORITY PUMPING STATION STATISTICS Brush Run Watershed Last update: 12/15/09

FAIRWAY ESTATES:

Wet Well Capacity	1232 Gal.			
Additional storage capacity	4500 Gal.			
Emergency Overflow	NO			
Transfer switch/Generator Connection	NO			
Portable Pumping Connection	NO			
Emergency Response Plan	Portable pumps to tanker truck			
	 Portable generator wired direct 			
Homes Served	11			
Permit Date Aug. 31, 1990				
Permit No.	6390404			
Design Capacity	36,000 GPD			

W/W capacity calculated to rim elevation of wet well

RUTLEDGE DRIVE:

Wet Well Capacity	1030 Gal.		
Additional storage capacity	3052 Gal.		
Emergency Overflow	YES		
Transfer switch/Generator Connection	YES		
Portable Pumping Connection	NO		
Emergency Response Plan	Portable generator via connection		
	 Portable pumps to tanker truck 		
Homes Served	62 + Fairways Discharge		
Permit Date	Jan. 8, 1971		
Permit No.	6370415		
Design Capacity	144,000 GPD		

Holding tanks begin to fill with w/w after 3.5'

SYLVANIA DRIVE:

,

Wet Well Capacity	2277 Gal.		
Additional storage capacity	Included in above		
Emergency Overflow	NO		
Transfer switch/Generator Connection	NO		
Portable Pumping Connection	NO		
Emergency Response Plan	Portable pumps to tanker truck		
	 Portable generator wired direct 		
Homes Served	11		
Permit Date	Jan. 26, 1972		
Permit No.	6371421		
Design Capacity	144,000 GPD		

1500 Gal. overflow tank fills with w/w after 3.75"

H:\TREATMENT\COLLECTION SYSTEM:Lift stations\Pumping Station Statistics.doe

COLONY MANOR:

Wet Well Capacity	3435 Gal.			
Additional storage capacity	0			
Emergency Overflow	YES			
Transfer switch/Generator Connection	NO			
Portable Pumping Connection	NO			
Emergency Response Plan	 Portable pumps to tanker truck 			
	Portable generator wired direct			
Homes Served	31			
Permit Date	Dec. 3, 1987			
Permit No.	6387418			
Design Capacity	115,000 GPD			

W/W Capacity calculated to overflow elevation

HIDDEN BROOK:

Wet Well Capacity	8267 Gal.
Additional storage capacity	4458 Gal.
Emergency Overflow	NO
Transfer switch/Generator Connection	YES/On Site Generator
Portable Pumping Connection	YES
Emergency Response Plan	On site generator w/auto transfer
	• 6" engine driven pump from
	connection to force main
Homes Served	303 (at build out) Includes
	117 from HVM and 10 from Trigon
Permit Date	March 7, 2003
Permit No.	6302403
Design Capacity / Rated Capacity	315,000 / 316,800 GPD

W/W Capacity calculated to rim elevation of w/w

MAPLE LANE:

Wet Well Capacity	3,000 Gal.			
Additional storage capacity	YES (8.600 Gal. tank @ Timbercrest)			
Emergency Overflow	NO			
Transfer switch/Generator Connection	YES/On Site Generator			
Portable Pumping Connection	NO			
Emergency Response Plan	 Portable pumps to tanker truck 			
	• On-site generator w/ auto_transf.			
	 Portable generator w/man transf. 			
Homes Served	64 (incl. vacant lots)			
Permit Date	July 25, 2006			
Permit No.	026106			
Design Capacity	216,000 GPD			

Station-WareTM 1996 Marsh-McBimey, Inc.

F

Summary Report for Station-Analyzer TM

ort Date . cription	: 12/11/2 : FAIRW : FAIRW	2013 IAY IAY ESTATE	ES L.S.	Period : Report From : Report To :	17 Days 11/22/0 12/9/01	113 10:21:00 AI 13 12:52:00 PM
v Inform	ation	م م الم م الم الم الم	in Living	الي . الي . مورية الدورية .		
<u>al Flow</u> erage Inflow imum Inflow kimum Inflo	r Rate w Rate w Rate	: <u>83402.1</u> : 3.39 GF : 0.48 GF : 15.60 G	9 <u>Gallons</u> PM PM @ 12/2/ PM @ 11/2	/0113 4:18:45 A 22/0113 10:04:2	M 23 PM	
p Inforr	natior	the state of				and the second
p# # (of Starts	R	un Minutes	% Usage	Avg.	Pump Rate
3	58		1219.60	45.65%	33	3.06 GPM
3	58		1452.03	54.35%	2	9.39 GPM
0			0.00	0.00%	0.	.00 GPM
0	and the second second		0.00	0.00%	0.	.00 GPM
age Flo	w Rat	e for Pu	тр Со	mbination	is	
Pump Rate	Pumps	Pump Rate	Pumps	Pump Rate	Pumps	Pump Rate
0.00 GPM	2,3	0.00 GPM	1,2,4	0.00 GPM	2,3,4	0.00 GPM
0.00 GPM	2,4	0.00 GPM	1,2,3	0.00 GPM	1,2,3,4	0.00 GPM
1,4 0.00 GPM 3,4 0.00 GPM 1,3,4 0.00 GPM						
on Infoi	rmatio	n	the set	4		
Avera	ge Pump	Time 3	3.73 Minute	S		
То	tal # of C	ycles 7	17			
Ave	erage Fill	Time 3	0.56 Minute	es		
		Other L	Events			
1/27/0113 1	:46:04 PI	M- Maint. ON	1			
1/27/0113 1	:46:48 PI	M- Power Of	f			
1/27/0113 1	:48:52 PI	M-Power Or	1			
11/27/0113 1:49:16 PM- Maint. ON						
11/2//0113 1:49:18 PM- Maint. OFF						
	ort Date cription <u>v Inform</u> <u>al Flow</u> rage Inflow imum Inflow imu	ort Date : 12/11/2 : FAIRW cription : FAIRW v Information al Flow erage Inflow Rate imum Inflow Rate 0 imum Inflow Rate 0.00 GPM	ort Date : 12/11/2013 : FAIRWAY cription : FAIRWAY ESTATE v Information al Flow : 83402.1 crage Inflow Rate : 3.39 GF imum Inflow Rate : 0.48 GF cimum Inflow Rate : 15.60 G p Information	port Date : 12/11/2013 : FAIRWAY cription : FAIRWAY ESTATES L.S. v Information al Flow : 83402.19 Gallons arage Inflow Rate : 3.39 GPM imum Inflow Rate : 0.48 GPM @ 12/2/ kimum Inflow Rate : 15.60 GPM @ 11/2 p # of Starts Run Minutes 358 1219.60 358 1452.03 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0 0.00 0.00 GPM 2,3 0.00 GPM 1,2,4 0.00 GPM 1,2,4 0.00 GPM 3,4 0.00 GPM 1,3,4 0 Grade Pump Time 3.73 Minute Total # of Cycles <td>Period : : Period : Scription : FAIRWAY Report From : cription : FAIRWAY ESTATES L.S. Report To : V Information </td> <td>part Date : 12/11/2013 Period : 17 Days : FAIRWAY Report From : 11/22/0 cription : FAIRWAY ESTATES L.S. Report To : 12/9/01 v Information </td>	Period : : Period : Scription : FAIRWAY Report From : cription : FAIRWAY ESTATES L.S. Report To : V Information	part Date : 12/11/2013 Period : 17 Days : FAIRWAY Report From : 11/22/0 cription : FAIRWAY ESTATES L.S. Report To : 12/9/01 v Information

Station-WareTM 1996 Marsh-McBimey, Inc.

Summary Report for Station-Analyzer TM

Report Date .	: 12/11/2013
Site	: SYLVANIA
Description	: SYLVANIA DR. L.S.

 Period :
 17 Days

 Report From :
 11/5/0113 10:27:00 AM

 Report To :
 11/22/0113 10:02:00 AM

Flow Information - 15+3141 : 72850.33 Gallons **Total Flow** 3.03 GPM Average Inflow Rate : Minimum Inflow Rate 0.30 GPM @ 11/20/0113 6:08:28 AM : Maximum Inflow Rate 27.01 GPM @ 11/7/0113 7:31:36 AM **Pump Information** 100 Pump # # of Starts **Run Minutes** % Usage Avg. Pump Rate 1 418 630.23 43.68% 57.61 GPM 2 416 812.60 56.32% 44.57 GPM 3 0 0.00% 0.00 GPM 0.00 4 0 0.00 0.00% 0.00 GPM Average Flow Rate for Pump Combinations Pumps Pump Rate Pumps Pump Rate Pumps Pump Rate Pumps Pump Rate GPM 2.3 0.00 GPM 1.2.4 0.00 GPM 2,3,4 0.00 GPM 1.2 1.3 0.00 GPM 2.4 0.00 GPM 1,2,3,4 0.00 GPM 1.2.3 0.00 GPM 1.4 0.00 GPM 3.4 0.00 GPM 1.3.4 0.00 GPM Station Information 1.73 Minutes Average Pump Time 835 Total # of Cycles 27.04 Minutes Average Fill Time **Other Events** 11/7/0113 1:08:38 AM- Power Off 11/19/0113 1:34:10 PM- Maint, OFF 11/7/0113 1:16:23 AM- Power On 11/7/0113 1:19:31 AM- Power Off 11/7/0113 1:19:56 AM- Power On 11/8/0113 7:16:28 PM- Power Off 11/8/0113 9:25:54 PM- Power On 11/19/0113 1:25:14 PM- Maint, ON 11/19/0113 1:27:02 PM- Power Off 11/19/0113 1:33:29 PM- Power On 11/19/0113 1:33:53 PM- Maint. ON

Station-WareTM 1996 Marsh-McBirney, Inc.

Summary Report for Station-Analyzer TM

Report Date	: 10/21/2013
Site	: COLONY_M
Description	: COLONY MANOR L.S.

 Period :
 1 Month 11 Days

 Report From :
 7/2/0113 10:38:00 AM

 Report To :
 8/13/0113 11:35:00 AM

105g - + i **Flow Information** 4× 43-**Total Flow** : 334184.19 Gallons 5.52 GPM Average Inflow Rate . Minimum Inflow Rate : 0.91 GPM @ 7/23/0113 3:38:53 AM Maximum Inflow Rate 117.62 GPM @ 7/10/0113 9:16:40 AM Pump Information T 11 T Avg. Pump Rate Pump # # of Starts Run Hours % Usage

-				and the second se	and the second s	-
	4	0	0.00	0.00%	0.00 GPM	
	3	0	0.00	0.00%	0.00 GPM	
	2	1142	30.68	51.07%	94.41 GPM	
	1	1181	29.40	48.93%	95.10 GPM	
_						

Average Flow Rate for Pump Combinations

Pumps	Pump Rate	Pumps	Pump Rate	Pumps	Pump Rate	Pumps Pump Rate
1,2	0.00 GPM	2,3	0.00 GPM	1,2,4	0.00 GPM	2,3,4 0.00 GPM
1,3	0.00 GPM	2,4	0.00 GPM	1,2,3	0.00 GPM	1,2,3,4 0.00 GPM
1,4	0.00 GPM	3,4	0.00 GPM	1,3,4	0.00 GPM	

Station Information

Average Pump Time	1.55 Minutes
Total # of Cycles	2324
Average Fill Time	24.47 Minutes

Other Events

7/18/0113 6:16:28 AM- Power Off 7/18/0113 6:22:19 AM- Power On

PETERS TOWNSHIP SANITARY AUHTORITY

PUMPING STATIOINS TRIBUTARY TO BRUSH RUN WPCP

Listed below is a summary of the data obtained from the permanent flow metering devices at the Authority's pumping stations equipped with such devices.

Rutledge Drive	
Report Date: January 3, 2	2014
Report Period:1/1/	/13 to 12/31/13
Long term average pumping rate:	116 GPM
Maximum pumping rate:	126 GPM
Hidden Brook	· · · · · · · · · · · · · · · · · · ·
Report Date: January 3, 2	014
Report Period: <u>1/1/13 to 12</u>	/31/13
Long term average pumping rate:	213 GPM
Maximum pumping rate:	231 GPM
Maple Lane	
Report Date: January 3, 20	014
Report Period: 1/1/13 to 12	/31/13
Long term average pumping rate:	127 GPM
Maximum pumping rate:	1141 GPM

PETERS TWP SANITARY AUTHORITY

Lift Station Historic Pump Rates

	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013
LOCATION Design Cap.																	
RUTLEDGE DR.	105	136	145	153	119	106	117	123	132	125	117	117	111	108	116	119	116
144,000 GPD	105	98	130	154	116	98	114	123	132	125	117	117	111	108	116	119	115
COLONY MANOR	117	99	93	90	83	88	84	73	77	73	79	81	75	98	93	91	95
115,000 GPD	61	124	109	109	93	97	88	90	100	91	94	98	76	93	102	99	94
STRATFORD	85	112	94	51	144	176	210	132	131	140	130	138	140	134	134	139	136
144,000 GPD	95	87	79	75	130	184	211	132	131	140	130	138	140	134	134	139	136
FAIRWAY EST.	33	33	32	33	25	18	18	16	15	17	16	13	17	33	39	32	33
36,000 GPD	29	33	32		23	18	18	19	15	17	17	14	17	32	40	29	29
TIMBERCREST	94	108	48	149	105	107	101	67	118	117	117	118	n/a	n/a	n/a	n/a	n/a
144,000 GPD	129	120	23	138	100	101	81	51	123	116	117	118	n/a	n/a	n/a	n/a	n/a
SYLVANIA DR.	73	26	65	61	103	148	63	66	84	88	71	102	72	58	57	54	58
144,000 GPD	53	72	72	146	150	103	37	55	89	94	66	122	66	56	48	39	45
WATERDAM	73	114	72	94	76	95	118	108	109	102	111	75	162	82	97	65	131
223,000 GPD	71	79	95	86	75		101	168	88	133	139	114	116	81	97	73	137
HIDDEN VALLEY 184,320 GPD					134 140	148 157	119 124	160 211	n/a n/a								
HIDDENBROOK 315,000 GPD									245 245	239 239	241 232	222 221	207 203	217 217	201 204	215 215	213 213
MAPLE LANE 216,000 GPD													195 195	170 170	137 137	139 139	127 128

APPENDIX F

Flow Meter Calibration Certificates

KLH -

423 Stoneybrook Drive Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

	Certificate No CC	T.I.M1243
Customer Information:	Ref PO No	
Company P.T.S.A.		
Site Address 111 Bell DR		
City Mussan	State:	Zip _15317_
Contact Information:		
Name MARK Chucuday		
Title Asst. MGR		
Street Address Same as about		
City	State:	Zip
Tel []		
Instrument Data:		
Description BFP Converter		
Manufacturer Fre	Model No.	52FT1210ACB
Serial No 8512 A 01 695	Tag No.	
Calibaration Data:	Test Equipment:	
Units of Measurement		
1. 4-20 MA DC 6.	1. Fluke 8060 A D.V.	<u>6,</u> Μ
2. ftpersec 7.	2. A.B.B. How Simula	to
3 8	3	
4 9 5 10.	4 5.	
·		
Reference Data:		
Ambient temperature (°F):/_>	Relative Humidity (%)	<u> </u>

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

Calibrated by:

6 ingry NAME

27 ANG. 013_

423 Stoneybrook Drive Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

	Certificate No CC T.I.M1243
Customer Information:	Ref PO No
Company P. J. S. A.	
Site Address _111 Bell DR	
City ME MULLAY	State: <u>Yu</u> Zip <u>153)7</u>
Contact Information:	
Name MARK Chucu	ddy
Title ASST. MGR)
Street Address Same as about	~{
City	State: Zip
Tel []	
Instrument Data:	
Description Plant Info Ult	asonic Flow xmtr./rectind
Manufacturer 94 WLO2000	825422.84, 110349-Model No. 50453143BBB
Serial No F q f	033~Bo3 Tag No
Calibaration Data:	Test Equipment:
Units of Measurement	
1. 4-20 M.A.DC 6.	1. FLAKE 8060 A D.V.O.M.
2 7	2
3 8	3
4 9	4 5.
5 10	
Reference Data: Ambient temperature (°F):5	Relative Humidity (%)

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

alibrated by:

6 an Rryph

21 Sept. 0/3

423 Stoneybrook Drive Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

		Certificate No CC	I.M1243
Customer Infor	mation:	Ref PO No	
Company	P. I. J. A		
Site Address	111.15en DR	<u> </u>	- 16317
City	M-Muriay	State: <u>U</u>	Zip <u>15_)[</u>
Contact Inform	ation:		
Name	MARK Chucuddy		
Title	Asst. MGR		
Street Address	Same as above		
City		State:	_ Zip
Tel	[]		
Instrument Da	ta:		
Description	Bis florer Xmitis Auration	on Display- Piaester Displac	2. Ateration + Digester MTR.
Manufacturer	For Rosemant	Model No. 501	SP4100A45
Serial No.	9410101949-997/110349- Fore Rose	<u>044400</u> Tag No	1
Calibaration Da	ita:	Test Equipment:	
Units of M	<u>Measurement</u>		
1. In. H20	6	1. TAylor 300	
2. 420 M. A.	7	2. <u>Fluke 8060 DV.O.M.</u>	
3 4	8 9	3. 1875511 atton 104017	
5	10.	5	
Reference Data Ambient tempe	a: rature (°F): <u>75</u>	Relative Humidity (%)	

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

Calibrated by:

27 Aug. 013

423 Stoneybrook Drive Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

	Certificate No CC	T.I.M 1243
Customer Information:	Ref PO No	
Company <u>R. 1; 5. A</u> Site Address <u>III Bell DR</u> City <u>MCMulfay</u>	State:	Zip 15317
Contact Information: Name <u>MARK Chucualdy</u> Title <u>Assti</u> MGR. Street Address <u>Same as above</u>		
City Tel []	State:	Zip
Instrument Data: Description <u>RAS metel</u> Manufacturer <u>FA</u> Serial No. <u>940025455</u>	Model No. Tag No.	SOXM13BXADLOAAA (209
Calibaration Data: <u>Units of Measurement</u>	Test Equipment:	
1. 4-20 M.A.A.C. 6. 2. Ft./per Sec. 7. 3. 8. 4. 9. 5. 10.	1. Fluke 8060 A D 2. A.B.B. Flore Simi 3. 4.	.V.O.M.
Reference Data: Ambient temperature (°F): <u>75</u>	Relative Humidity (%)	<u>.</u>

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

Calibrated by:

6 som Pringhen

27 Aug 0/3

423 Stoneybrook Drive Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

	Certificate No CC	T.I.M1243
Customer Information:	Ref PO No	
Company P.T. S.A		
Site Address Bell UR	0	
City Mc Muliuy	State: Ya	Zip 15317
Contact Information:		
Name MARK Chucudky		
Title ASST. MGR.		
Street Address Same as above		
City	State:	Zip
Tel []		
Instrument Data:		
Description BAR Screen TRAnso	Jucer	
Manufacturer M: 11-travics	Model No.	MRP-YGO
Serial No. 0094637	Tag No.	
Calibaration Data:	Test Equipment:	
Units of Measurement		
1. 4-20 MA. A.C. 6.	1. Fluke SOGOA D	.V. O.M.
2 7	2	
3 8	3	
4 9 5 10.	4, 5.	
·······		
Reference Data:	\Box a lative literately (0())	
Ampient temperature (°F): <u>16</u>	Helative Humidity (%)	

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

Calibrated by: 6mg Pruthon

27 Aug. 0/3

TIM

TOTAL INSTRUMENT MAINTENANCE 423 Stoneybrook Drive

Elizabeth, PA 15037

BRUSH RUN

FIELD CALIBRATION CERTIFICATE

NOTE: This is a multi-part form. For legible copies, please press firmly when entering data.

	Certificate No CC	T.I.M1243
Customer Information:	Ref PO No	
Company P.T.S.A		
Site Address III Bell DR	0	150
City Multer	State: <u>\U.</u>	Zip <u>15 3[1]</u>
Contact Information:		
Name MARK Chuchldy		
Title HSST, MGP		
Street Address Jame US (LIDEVL		
City	State:	Zip
Tel []		
Instrument Data:		
Description Spare ECC. rec.		
Manufacturer Chessell	Model No.	1392
Serial No. 110349-003-1503	Tag No.	
Calibaration Data:	Test Equipment:	
Units of Measurement		
1. 4-20 M.A.A.C. 6.	1. IRANSMENTION 1040	
2 /	23	
4 9	4	
5 10	5	
Reference Data: Ambient temperature (°F): <u>75</u>	Relative Humidity (%)	

The instrumentation described above has been accurately calibrated under ambient conditions in accordance with the Manufacturer's documented procedures and specification. The test equipment used is calibrated and is traceable to the National Institute of Standards and technology.

Calibrated by:

NAME

27 AuG. 0/3

APPENDIX G

PTSA System Index Map

Peters Township Sanitary Authority Brush Run Water Pollution Control Plant 2013 Chapter 94 Report

KLH

AND DESCRIPTION OF